
[Schneider90] F.B. Schneider, “Implementing Fault-tol-
erant Services using the State Machine Ap-
proach: A Tutorial,”ACM Computing
Surveys22, December 1990.

[Alsberg76] P.A. Alsberg, and J.D. Day, “A Principle for
Resilient Sharing of Distributed Re-
sources,”Proceedings of the Second Inter-
na t iona l Con fe rence on So f tware
Engineering,1990, San Francisco, CA,
562-570.

[Albitz92] P. Albitz and C. Liu, “DNS and BIND,”O’R-
eilly & Associate, Inc.,October 1994.

[OSF92] Open Software Foundation, “Introduction to
OSF DCE,”Prentice Hall, Inc.,1994.

[Birrell82] A.D. Birrell, R. Levin, R.M.Needham and
M.D. Schroeder, “Grapevine: An Exercise
in Distributed Computing,”Communica-
tions of the ACM 25,pp 260-274.

[Birrell84] A.D. Birrell, and B.J. Nelson, “Implementing
Remote Procedure Calls,”Communica-
tions of the ACM Transaction on Compute
Systems,Vol. 2, No.1, pp 39-59, February
1984.

[Lampson86] B.W. Lampson, “Designing a Global
Name Service,”Proc. 5th ACM Annual
Symposium on Principles of Distributed
Computing,Calgary, Canada.

[ISIS92] “The ISIS Distributed Toolkit Version 3.0 User
Reference Manual,”ISIS Distributed Sys-
tems, Inc. 1992.

[Sykas91] E.D. Sykas, and G.L. Lyberopoulos, “Over-
view of the CCITT X.500 Recommenda-
tions series,”Computer Communications
Review,November 1991.

[Stonebraker91] M. Stonebraker and G. Kemnitz, “The
POSTGRES Next-Generation Database
Management System,”Comm. of the ACM,
Vol. 34, No. 10, October, 1991, pp.78-92.

[Rowe92] L.A. Rowe, and B.C. Smith, “A Continuous
Media Play,”Proc. 3rd Int. Workshop on
Network and OS Support for Digital Audio
and Video,San Diego CA, November
1992. Also available as ftp://mm-ftp.cs.-
berkeley.edu/pub/multimedia/papers/CM-
Player.ps.Z.

lease 3.3.

The name server package is composed of approximately
3500 lines of Tcl code:

(1) 1000 lines in the name server
(2) 700 lines in the client library
(3) 1800 lines in the name server monitor

and installation interface.

The most difficult part of the implementation was debug-
ging the backup servers because each backup server runs
as a daemon and there is no Tcl debugger that allows you
to attach to a process and debug it. Testing the auto-start
feature also turns out to be difficult because servers can
fail to start and tools to monitor remote process do not
exist. Despite the implementation difficulties, the experi-
ence with the name server so far has been positive. Its ad-
vantage is particular obvious in a demonstration
environment in which things are unstable.

Currently, we are considering whether to extend the
name server to handle service load-balancing. As men-
tioned before, a client can query the name server for a list
of servers that support particular service. However, it is
up to the client to pick the server to which it wants to con-
nect. It would be very useful for the client to have access
to data such as the load of each service so it can make
more intelligent decisions. One way to implement this
feature is to have each server periodically report its load
average to the name server in a format that clients can un-
derstand. Or, the name server can periodically monitor
the load average of the machine on which the server is
running. It remains to be investigated which approach is
better. Another extension being considered is to use the
backup servers as replicated servers giving the name
server as a whole higher throughput. The idea is to direct
all read-only requests to the backup servers and all up-
dates to the primary server. The issues involved are how

to distribute the requests evenly among the backup serv-
ers and what happens when a backup server crashes.

6. References
[Smith93] B.C. Smith, L.A. Rowe, and S. Yen, “Tcl Dis-

tributed Programming,”Proc. 1993 Tcl/Tk
Workshop,Berkeley, CA, June 1993.

[Ousterhout94] J.K. Ousterhout, “Tcl and the Tk Tool-
kit,” Addison-Wesley Professional Com-
puting Series, April 1994.

[Rowe94] L.A. Rowe, “Continuous Media Applica-
tions,”Computer Science Division - EECS,
University of California at Berkeley,No-
vember 1992. Also available as ftp://mm-
ftp.cs.berkeley.edu/pub/multimedia/pa-
pers/CMApps94.ps.Z.

[Federighi94] C. Federighi and L.A. Rowe, “The Design
and Implementation of the UCB Distrib-
uted Video On Demand System,”Proc. of
IS&T/SPIE 1994 Int’l Symp. on Elec. Im-
aging: Science and Technology, San Jose,
CA, February 1994. Also available as ftp:/
/mm-ftp.cs.berkeley.edu/pub/multimedia/
papers/VodsArch-SPIE94.ps.Z

[Rowe95] L.A. Rowe, et. al., “The Berkeley Distributed
VOD System,”Proc. 6th NEC Research
Symposium on Multimedia Computing,To-
kyo, Japan, June 1995.

[Ritchie74] D.M. Ritchie, and K. Thompson, “The
UNIX Time-Sharing System,”Communi-
cations of the ACM 17:7, July 1974.

[Stiner88] J.G. Steiner, C. Neuman, and J. I. Schiller,
“Kerberos: An Authentication Service for
Open Network Systems,”USENIX Winter
Conference, February 9-12 1988, Dallas,
Texas.

FIGURE 9. Primary-Backup Protocol

Client

Primary

Backup

1

2

3

down the entire system. In backup mode, a system ad-
ministrator can specify a list of machines on which the
name server should run. One machine is picked as the
primary server, and the rest are backup servers. Also,
each server has an implicit server identification number
(SID) that is inferred from the machine list. Each backup
server maintains a private connection with the primary,
forming a star configuration as shown in Figure 8. When
the primary goes down, each backup server will detect it
by noticing the bad connection. The backup server with
the SID one greater that the primary’s SID will then des-
ignate itself as the new primary and the others will re-
form the star configuration around the new primary. In
Figure 8, backup server one (B1) takes over as the pri-
mary server. Once the new primary takes over, it will try
to restart the dead server. The bad-connection detection
is implemented by setting the keepAliveflag usingdp_-
socketOption which requests the system to send pe-
riodic messages on a tcp socket. Should the connected
party fail to respond to these messages, the connection is
considered broken and will be closed automatically. The
dp_atclose command, which allows a list of com-
mands to be executed when connections are closed, is
called to re-form the start configuration.

In backup mode, the primary server maintains consis-
tency among the backup servers. Figure 9 shows the sim-
ple primary-backup protocol used by the Tcl-DP name
server. The dotted arrows are thekeepAlivemessages
mentioned above. The client sends an update command
to the primary name server. The name server processes
the request and updates its state. It then sends an update-
state request to the backup server. Without waiting for
acknowledgment from the backup, the primary sends its

response to the client. Each server also writes its state
onto a local disk. The justification for writing to local
disk is to avoid writing onto an NFS-mounted file system
which can hang the server when it goes down. This
scheme makes crash recovery almost instantaneous be-
cause the major source of delay is detecting the bad con-
nection.

The external-module interface is currently implemented
using the auto-loading feature of Tcl and the RPC com-
mand checking feature of DP. The routines from an ex-
ternal module must all have the same unique prefix that
is known to the name server. When an RPC request is
sent to the name server, the command check procedure
will match the routine prefix with the ones known to the
name server. If it matches and the routine does not exist,
the name server will automatically source the module
containing the routine. This approach prevents naming
conflicts among different modules. However, it does not
prevent a module from renaming procedures and cor-
rupting data. A better approach is to create a separate Tcl
interpreter for each external module with read-only ac-
cess to name server data. Again, each module is identi-
fied by its unique prefix and the correct interpreter will
be selected to interpret a RPC. We plan to modify the im-
plementation of name server extension using this tech-
nique in a future release.

5. Discussion

A prototype of the Tcl-DP name server has been imple-
mented. The Berkeley Plateau Multimedia Project has
used it in the implementation of CMT and BVODS sys-
tems. The name server has been included in Tcl-DP re-

FIGURE 8. Backup Scheme

P

B1

B2

B3

B4 B5

P

B2B3

B4 B5

6. The new server process connects to the name server
process and register its host name and port number to
the name server. Note that the server process gets the
name from its command line used to start it. The ser-
vice name is appended to the command line when
the name server starts up the server.

7. The client gets the host address and port number of
the server process from the name server

8. The client connects to the server process.

Launching servers usingrsh is similar except thatin-
etd andlaunchd are bypassed.

Every auto-started servers shares a pair of random tickets
with the name server. The server can retrieve these tick-
ets fromstdin which is written by the name server. The
tickets are used to authenticate the server to the name
server and vice versa. For example, when a server regis-
ters itself to the name server, it will send its half of the
ticket pair to the name server. The name server then ver-
ifies the ticket with its internally maintained table of tick-
ets. If the ticket is not valid, the name server will ignore
the server

A client application can also ask the name server to au-
thenticate a particular server by using the technique de-
scribed above. If a server is authentic, the name server

will generate a new pair of tickets to be shared between
the application and the server. The server and the appli-
cation can then use the tickets to authenticate each other.
Figure 7 is a diagram that depicts the name server secu-
rity scheme:

1. The client requests the name server to authenticate a
server.

2. The name server and the service server exchanges
tickets [Tn,Ts]. If the server has the right ticket, a
new pair of tickets are generated by the name server
[T1,T2].

3. The name server sends the new ticket pair to the
server and the client.

4. The server and the client can then use the tickets to
authenticate each other.

Currently, tickets are generated by the system clock, and
they are not encrypted. This authentication strategy is
similar to the one employed by Kerberos [Steiner88]. An
authentication is done at the name server level because it
is easy to implement and does not require changes to Tcl-
DP. However, if Tcl-DP were modified to run on Ker-
beros, this feature would become obsolete.

The Tcl-DP name server can be configured to run in ei-
ther stand-alone or backup mode. In stand-alone mode,
the name server is a single point of failure that can bring

FIGURE 7. Authentication Scheme

Client

Legend:

machine

process

A
B Communication

Initiated by A

1

3

2

3

4

[Ts, Tn]

[Ts, Tn]

[T1, T2]

[T1, T2]

Name
Server

Server

minister the name server including routines to add, de-
lete, alias and edit services. These commands are used to
implement the name server monitor.

Lastly, there is a set of commands for authentication be-
tween the name server and its servers, and between a
server and its clients. The following code segment illus-
trates its usage by a client application:

set ticketPair [ns_AuthenticateService /
cms/bugs-bunny]

set myTicket [lindex $ticketPair 0]
get client’s ticket

set srvcTicket [lindex $ticketPair 1]
get service’s ticket

if {$srvcTicket!= [dp_RPC $srvc_fd
ns_Authenticate $myTicket]} {

error “Service authentication failed!”

}

The remainder of this section describes the implementa-
tion of the following functions: 1) auto-starting services,
2) using authentication, 3) configuring a reliable name
server, and 4) extending name server functionality. When
an application needs to connect to a service, it will ask
the name server for the host address and port number of
the server. If a server is not currently running for anauto-

start service, the client can request the server to be
started either usingrsh or inetd .

Using rsh to launch a server has the disadvantage that
when the name server crashes, the server may go down
as well becausersh maintains a connection between the
process and the process it starts.Inetd avoids this prob-
lem by not maintaining a connection. A server is
launched usinginetd as follow (see Figure 6):

1. Client process requests the name server to launch a
service.

2. The name server connects to the inet daemon
(inet d) running on the host on which the server is
to be started.

3. Inetd executes the launch daemon (launchd)
which opens a connection with the name server for
launchd , and exits.

4. The name server requestslaunchd to start the
server. Launchd is a Tcl script that executes the
server on behalf of the name server. It also checks
whether a server is legal so a malicious user cannot
request a dangerous program such asrm. The suc-
cess or failure of the launching procedure is reported
back to the name server.

5. Once the service is started,launchd exits which
closes the connection with the name server.

FIGURE 6. Auto-Starting Services

Name
Server

INET
Daemon

Launch
Daemon

Server

Legend:

machine

process

A
B Communication

Initiated by A

Client

2

3

4

5

6

1,7

8

of Tcl-DP. The client library package provides a wrapper
around the actually RPCs which hides the remote nature
of the name server. The commands are grouped into four
categories shown in Table 1. The first category includes
the client routines. These routines include commands for
listing, locating and launching services, plus routines for
inquiring and resetting service status. By intermixing the
different commands, a client can implement different be-
haviors. For example, a client can first list all services
and pick the ones to which it wishes to connect. It can
then get the host address and port number on which the
service is running and connect to it. If the service
crashes, the client can ask the name server to reset the
server and launch it again. The following code segment
illustrates this case:

set srvc [lindex [ns_ListServices *] 0]
get a list of all the services and pick

the first one

set hp [ns_FindServices $srvc]
get the host port

if [catch “dp_MakeRPCClient $hp”] {
if the service has crashed

ns_LaunchServices $srvc
ask the name server to launch it

again

wait for the service to come up

}

The second category is composed of routines for the ser-
vice interface to the name server which are used by a
server to advertise services. For example, the following
Tcl code has to be executed by a server when it starts up:

ns_AdvertiseService /cms/bugs-bunny
bugs-bunny 1234 $ticket

“/cms/bugs-bunny” is the service name.Bugs-bunny is
the host address of the service, and1234 is the port num-
ber.$ticket is the authentication ticket issued by the name
server.

The third category is composed of routines used to ad-

Category Command Description

Client ns_ListServices return a list of services

ns_FindServices return hosts and ports

ns_LaunchServices auto-start services

ns_ServiceState return the states of services

Service ns_AdvertiseService advertise the service to the name server at start-up

ns_UnadvertiseService unadvertise the service

Administration ns_Register addService add a new auto-start service

ns_Register deleteService delete an auto-start service

ns_Register editService modify an existing service

ns_Register aliasService create an alias to an existing service

ns_Register infoService return administration info about a service

Authentication ns_AuthenticateService authenticate the service and return new tickets to the client
and the service

dp_RPC ns_Authenticate authentication between a service and a client using the
tickets returned by ns_AuthenticateService

Table 1: Tcl-DP Name Server Commands

Also notice that all processes communicate with the
name server running on the Primary machine. If the pri-
mary name server goes down, the name server running
on the Backup machine will take over. Subsequent que-
ries will be directed to the backup server. This example
illustrates the backup capability of the Tcl-DP name
server. The connection maintained between the two serv-
ers is used for crash detection and update propagation.

As seen from the BVODS example, the main advantage
of using this naming scheme is that it avoids naming con-
flicts. As long as an application can specify a unique
name, such as BVODS, services provided by the applica-
tion can be assigned globally unique names.

Another advantage of using this service naming scheme
is that a client can easily find available services under
BVODS by having the name server do a glob-style ex-
pansion on the pattern “/BVODS/*”. One can think of
situations in which this feature can be very useful. For
example, we can have services named for the machines
on which they run (i.e., “/Service/roger-rabbit”, “/Ser-
vice/zonker”, etc.) A client first queries for the name of
all services running on different machines by issuing a
list services command on the pattern “/Service/*”, and
picking the one to which it wants to connect. If a partic-
ular service is overloaded, it can pick another one from
the list and switch to it. This capability allows a simple
client approach to load-balancing. One can also think of
a situation in which this capability can be used as a
backup scheme. If a service crashes on a machine and
cannot be restarted, a client can pick a server running on

a different machine. In addition, new services can be eas-
ily added without having to make major changes.

Having the Tcl-DP name server launch servers has two
advantages. First, the service is guaranteed to be avail-
able as long as the machines are up. Second, the name
server can issue authentication tickets to authenticate
servers.

In summary, the Tcl-DP name server uses a hierarchical
naming scheme that can be used to organize and manage
their services as well as providing fault-tolerance and
simple load-balancing. The fault-tolerant design of the
name server makes it highly reliable.

4. Name Server Implementation

This section describes the implementation of the Tcl-DP
name server. The name server is written in Tcl using the
DP extension for all interprocess communication. Sev-
eral new Tcl commands have also been added to thedpsh
to support running the name server as a daemon and gen-
erating random authentication tickets. The Tk window-
ing toolkit for building Motif-style user interfaces is used
to implement the name server monitor, shown in Figure
5, which displays the current status of registered ser-
vices. Users can restrict the services displayed by speci-
fying a glob pattern, such as “/vods/*” in theService
entry box. The monitor also allows users to add, alias,
edit, delete, launch, and reset services.

The Tcl-DP name server is composed of a small set of
commands that clients invoke through the RPC facility

FIGURE 5. Name Server Monitor

server achieves this flexibility and generality by allow-
ing applications to organize their services in a hierarchi-
cal manner as if they are files in a directory. In addition,
aliases can be created for services shared by different ap-
plications.

Before we discuss the advantages of the naming scheme,
an example of how the name server can be used in a real
distributed system is given. Figure 4 shows an example
of using the name server to manage BVODS. Boxes rep-
resent machines, ovals represent processes, and edges
represent communication paths. The labels in the process
ovals are service names. The labels next to the process
ovals are the service names registered with the name
server. As can be seen from the figure, all service names
have the prefix “/BVODS/” indicating that they are
BVODS services. Also, communication to the name
server is initiated through client library routines that are
wrappers around the actual RPC calls.

BVODS is a distributed video-on-demand system that is
suitable for large video libraries. Users search for videos
through a video browser. The browser queries informa-
tion about a video by connecting to a remote query server
(QS) which issues commands to a POSTGRES database
that contains indexes to the video library [Stone-

braker91]. The browser locates the QS by first issuing a
lookup query to the name server using “/BVODS/QS” as
the key. If the QS is running, the name server will return
the host address and the port number of the server which
the browser can use to connect to the QS. If the QS is not
running, the name server will start the QS server on be-
half of the browser. The authentication ticket, which is a
random number generated by the name server, is passed
on to the service. Once the QS is up and running, it will
register its existence with the name server using the au-
thentication ticket as a proof of legitimacy. When the
user identifies a movie he or she wants to view, the
browser locates the BVODS Manager (VMGR) using
the service name “/BVODS/VMGR” and connects to it.
It then asks the VMGR to determine if the movie is avail-
able on one of the local video file servers. If so, the
browser asks the VMGR for the machine and path names
for all components of the video and launches the CM-
Player to play them. The CMPlayer process opens a
video window and contacts the CMSource processes, on
each of the machines participating in the playback
[Rowe92]. The CMSources can be located through the
name server using the name “/BVODS/VFS1/CMS” and
“/BVODS/VFS2/CMS” which, in reality, are aliases for
the services “/CMS/Host1” and “/CMS/Host2”.

Postgres

Query
Server

/BVODS/QS

Browser

CMPlayer

Client Machine

FIGURE 4. BVODS Process Architecture

CMSource

VFS

VFS1
/BVODS/VFS1/CMS

/BVODS/VFS1/VFS

CMSource

VFS

VFS2
/BVODS/VFS2/CMS

/BVODS/VFS2/VFS

BVODS
Manager

/BVODS/VMGR

Name
Server

Primary

Name
Server

Backup

Legend:

machine

process

A
B Communication

Initiated by A

Authentication
Ticket

Authentication
Ticket

the address of a server and auto-starting server if neces-
sary.

The CCITT X.500 Directory System provides a frame-
work for the development of a worldwide standard for
directory services [Sykas91]. The information contained
in the Directory System is called the Directory Informa-
tion Base (DIB). It is organized in a tree, the Directory
Information Tree (DIT), similar to the DNS database.
The information about each entity is contained in an en-
try. Each entry consists of a set of attributes. Examples of
attributes are country name, street address, title, postal
address, telephone number, ISDN address and OSI ad-
dress. Each entry is identified by its unique Distin-
guished Name (DN). An example of a DN is “/.../C=US/
O=Berkeley”. The prefix “/...” is the name of the global
root.C stands for country, andO stands for Organization.
Aliases can also be created to reference other entries. The
user interacts with a Directory User Agent (DUA) which
is served by a Directory System Agent. Figure 3 depicts
the Directory System as a whole. The Directory may also
be composed of a centralized DSA rather than distributed
ones as shown in Figure 3. Each DSA holds a fragment
of the DIB which comprises one or more naming con-
texts. A naming context is a partial subtree of the DIT. A
DSA may use information stored in its local database or
interact with other DSAs to carry out requests. Three
modes of DSA interaction are defined: chaining, multi-
casting and referral. A mixture of the three is also possi-
ble. Chaining allows one DSA to pass on a remote

operation to another DSA when the former has specific
knowledge about naming contexts held by the latter.
Multicasting allows a DSA to pass on an identical remote
operation in parallel or sequentially to one or more
DSAs. Referral allows a reference to another DSA to be
returned to the DUA or DSA.

The Tcl-DP name server discussed in this paper is de-
signed to be a local name service with backups similar to
the CDS in DCE. It is not designed to be a global direc-
tory service like DNS and DCE. It only maintains infor-
mation about processes running on machines distributed
in a local domain. However, certain ideas used in the de-
sign of the name server are similar to other directory ser-
vices (i.e. the naming convention). Also, the Tcl-DP
name server can be extended using the external-module
interface to support higher level abstractions found in di-
rectory services.

3. Name Server Design

This section describes the naming scheme used by the
Tcl-DP name server and how it can be used in a distrib-
uted application such as the Berkeley Distributed Video-
On-Demand System (BVODS) [Rowe95].

The Tcl-DP name server is designed to be general-pur-
pose and flexible. We want different applications to share
the name server and use it for all types of services they
provide. We also want new services to be easy to add
without affecting other applications. The Tcl-DP name

FIGURE 3. CCITT X.500 Directory Services

DUA

DUA

DSA DSA

DSADSA

DSA

The Directory

Access Point

Users

Users

servers usually maintain more than one level of informa-
tion, and they cache complete or partial results of que-
ries. Also, name servers can be replicated to increase
availability and throughput. Two types of name servers
are used:primary masters andsecondary masters. A pri-
mary master loads data from files on the host on which it
runs. A secondary master loads data by periodically que-
rying a primary master.

Another well-known name server is the DCE Directory
Service which is comprised of three components: 1) Cell
Directory Service (CDS), 2) Global Directory Service
(GDS) and 3) Global Directory Agent (GDA) [OSF92].
CDS is a local directory service that stores names and at-
tributes of resources located in a DCE cell. It is opti-
mized for local access and replicated for reliability. GDS
is a distributed, replicated directory service based on the
CCITT X.500 international standard discussed below. It
is used when looking up a name outside of the local DCE
cell. GDS and DNS together can act as the high-level
connectors that allows independent cells to interact with
one another. GDS also works with other X.500 imple-
mentation which means it can participate in the world-
wide X.500 directory service. GDA is the intermediary
between a cell’s CDS and the rest of the world. It takes a
name that cannot be found in its local cell and queries
foreign cells to find it using GDS or DNS, depending on
where the foreign cell is registered. Figure 2 shows the
relationship between the different components of the
DCE directory system. The DCE namespace is also hier-
archical. It supports names used by DNS and typed
names using the X.500 syntax discussed below.

Grapevine is a distributed database running at Xerox
Palo Alto Research Center that has been used to provide
name service lookup for the Xerox Remote Procedure
Call (RPC) package [Birrell82, Birrell84]. It is highly re-
liable and can be configured to replicate data on different
servers. There are two types of entries in Grapevine:in-
dividuals andgroups. As far as the RPC package is con-
cerned, for each individual entry there is aconnect-site,
which is a network address, and for each group there is a
member-list which is a list of individual and group en-
tries. Using these two types of entries, one can create
complex hierarchies of services similar to the domain hi-
erarchy in DNS. To avoid long delays during client re-
quests, each client operation is performed at a single site
and the result is later propagated to other name servers in
the background. The disadvantage of this tactic is that in-
consistency may occasionally occur. A more recent sys-
tem design, such as Global Name Service (GNS),
restricts this nondeterminism by periodically sweeping
all replicas to ensure all updates are properly propagated
[Lampson86].

Other name servers are provided by distributed program-
ming systems (e.g. ISIS, ASN.1, etc.). The Distributed
Resource Manager provided by ISIS manages the execu-
tion of remote jobs on a local network [ISIS92]. It in-
cludes “recycling” idle workstations for remote use and
managing a pool of “compute servers.” It can also be
used to manage a reliable replicated service by ensuring
that some desired number of copies of the service are al-
ways running, despite machine failures. The Resource
Manager supports a subroutine interface for looking up

FIGURE 2. DCE Directory Services

CDS GDACDS GDACDS GDA

GDS
DNS

Cell A Cell B Cell C

Organization A Organization B Organization C

(X.500)

For example, a directory service for a conferencing ap-
plication can be used to keep track of the users currently
logged onto the different conferencing servers running
on the network. A user can lookup a person from the di-
rectory service and ask for the location of his/her confer-
encing server. Without the external-module interface, the
user will have to first query the name server for the loca-
tion of the directory service and then ask the directory
service for the location of the person he/she wants to talk
to. The directory service will in turn ask the name server
for the location of the desired conferencing server. With
the external-module interface, since the directory service
runs as part of the name server and has direct access to its
data, the user only has to contact the name server to get
the desired information, thus eliminating two levels of
indirection. Therefore, the interface mechanism can sig-
nificantly reduce the response time of certain applica-
tions. The purpose of these external modules should be
to extend the name server functionality or provide
higher-level abstractions on top of the one provided by
the name server.

Considerable interest exists to develop an international
standard for name services or directory services due to
the diverse requirements raised by the developments in
future communication networks. The requirements in-
clude integration of new services and sharing of network
resources by various communication services. Possible
applications of the directory service can be found in
Open System Interconnection (OSI), internetworking,
broadband networks and mobile communication. For ex-
ample, in future broadband networks, name services will
be used to manage addressing information of all commu-
nication entities such as telephones and computer termi-
nals, and Help-Desk information such as information
about hotels, hospitals, and airlines. In future mobile net-

works, the need for a name service is even more pro-
nounced because the current location of all subscribers as
well as information about networks and terminals have to
be maintained. In the following paragraphs, several well-
known name services including the Domain Name Sys-
tem (DNS), DCE Directory Service, Grapevine and oth-
ers, will be described, followed by an overview of the
CCITT X.500 Directory System standard.

The most widely used name servers are the ones that
comprise the Domain Name System’s (DNS) client-
server mechanism [Albitz92]. DNS is a distributed data-
base that holds the name-to-address mapping for every
host connected to the Internet. It is organized in a tree
structure similar to a file directory as shown in Figure 1.
The DNS namespace is partitioned into domains and
subdomains. In DNS, the name of the root is the null la-
bel (““). A typical name in the DNS database iscs.ber-
keley.edu. Figure 1 shows how this name can be stored
in the DNS database. A DNS name server contains infor-
mation about a segment of the database. A client that ac-
cesses the name server, called aresolver, issues queries
by calling a library routine. Given a query about any do-
main name, the root name servers can provide the names
and addresses for the top-level domain in which the
name is located. Top-level domain name servers can pro-
vide the list of name servers responsible for the second-
level domain. The process continues until the entire
query is resolved. For example, to resolve the namecs.-
berkeley.edu, the resolver first sends a query to the root
server for the location of theedu server. Theedu server
will then be used to retrieve information about the loca-
tion of theberkeley server. The process continues until
the actual location is found. In this case, the resolver will
be given the IP address of the CS Division machine
which is128.32.34.35. To speed up the process, name

FIGURE 1. DNS Database

edu

Berkeley

cs

gov com mil

““

to access them. It should provide an interface to query
such information using unique name associated with
each service. Consequently, the name server must en-
force a naming convention on services. The Tcl-DP name
server uses a hierarchical namespace, similar to other
name servers and the structure of a UNIX file system
[Ritchie74]. Section 3 will discuss the naming conven-
tion in more detail. Every server that offers a service un-
der the name server’s management must inform the name
server of its existence at start-up time and its demise
when it terminates. When a client needs to connect to a
service, it queries the name server for the host and port
number on which the service is running using the service
name as the key. The only information the client needs to
know in advance is the host address and port number of
the name server plus the names of the services to which
it wants to connect. As new services are added to a dis-
tributed system, only the service names need to be adver-
tised to the clients. Also, services can be freely moved
around on the local network without affecting the clients.

In a distributed environment, services must be highly
available because the livelihood of the clients may de-
pend on them. In certain cases, services must run 24
hours a day and 7 days a week. The name server can pro-
vide the illusion of 24-by-7 service by restarting the ser-
vice after it fails. In essence, the name server acts as a
service launcher. It assumes that services are either state-
less or can recover from disk. If a server process is de-
tected by a client to have crashed, the client can ask the
name server to restart the server process. If the server
cannot be restarted on a particular machine because that
machine has crashed, the client can request connection to
the same service running on a different machine. This as-
sumes that multiple processes offering the same service
are distributed across the local network. With this capa-
bility, failure recovery in case of server crash or a stale
network connection is simple. Therefore, unless the net-
work is partitioned or the name server goes down, ser-
vices are guaranteed to be available at all times. We call
this feature auto-starting.

As a dual feature to the auto-starting capability, the name
server can also terminate services on demand. One can
think of situations in which this capability is required.
For example, a service can get into a bad state in which
it must be killed before it can be restarted. The name
server is the perfect agent to carry out this task because it
maintains information such as the process identifier and
location of the server that provides the service.

Since the name server is capable of launching and termi-
nating services, it should also have the ability to authen-
ticate such requests to prevent malicious programs from
taking over as legitimate services. Therefore, an authen-

tication protocol is needed between the name server and
the services it manages. A similar protocol is needed be-
tween clients and servers in case they do not trust one an-
other. Effectively, the name server is acting as a security
checkpoint in the distributed system. A client can request
the name server to check the server on its behalf. The
name server can also set things up between the client and
server so they can authenticate each other. However, it is
still the responsibility of the application to restrict com-
mands and connections to clients.

The Tcl-DP name server uses a ticket-based scheme for
authentication. When a service is auto-started, the name
server issues a random ticket to the server process. The
server process must present this ticket when it reports to
the name server. Servers and clients can also authenticate
one another using tickets issued by the name server. This
approach is similar to the one used by Kerberos
[Steiner88].

To implement the functions mentioned in the preceding
paragraphs, the name server must itself be highly avail-
able and fault-tolerant. One way to implement a fault-tol-
erant name server is to use multiple servers that fail
independently. The state of a service provided by the
name server is replicated and distributed among these
servers, and updates are coordinated so that when a sub-
set of the servers fail, the service remains available.
There are generally two approaches to this fault-tolerant
architecture. One approach is to replicate the service
state in all servers and to present client requests, in the
same order, to all servers. This approach is commonly
calledactive replication or the state-machine approach
[Schneider90]. The other approach is to designate one
server as theprimary and all other servers asbackups.
This approach is called theprimary-backup or primary-
copy approach [Alsberg76]. Clients send requests only to
the primary. If the primary fails, afailover occurs and
one of the backups takes over as the new primary. The
state-machine approach is more costly because it re-
quires all client requests to be presented to each server,
and each server must process the requests in the same rel-
ative order. The advantage is that no requests are lost
when a subset of the servers fail. The primary-backup ap-
proach, on the other hand, is simpler and less costly but
suffers from lost requests when failure occurs. The Tcl-
DP name server employs the second approach because it
is simple and we assume that most applications can tol-
erate occasional lost requests.

The name server should also provide mechanisms for dy-
namically interfacing with external modules without in-
terrupting its own operations. The idea is to have the
name server auto-load these modules into its address
space at run time and allow them direct access to its data.

Abstract

This paper describes a general purpose name server for
Tcl-DP. This name server maintains host addresses and
port numbers of services running in a distributed envi-
ronment and allows clients to query about them. It starts
services on demand so services are guaranteed to be
available, and it provides a simple authentication proto-
col for better security. The Tcl-DP name server is also de-
signed to be fault-tolerant. Multiple backup servers can
be started on different hosts, and a failover occurs when
the main server goes down. In addition, the name server
provides mechanisms to interface with external modules
for extending its functionality.

1. Introduction

Tcl-DP [Smith93] is a distributed programming exten-
sion to Tcl [Ousterhout94]. It provides TCP and IP con-
nection management, blocking and nonblocking remote
procedure call (RPC), and a simple distributed object
system. It is a high-level scripting language for building
distributed client-server applications such as the Berke-
ley Continuous Media Toolkit (CMT) [Rowe94] and the
Berkeley Distributed Video-On-Demand System
(BVODS) [Federighi94, Rowe95].

Despite its convenience, Tcl-DP has several shortcom-
ings. First, the system does not provide service manage-
ment to client-server applications. Tcl-DP clients must
use explicit host addresses and port numbers to locate
services available to them, unless a customized service
registry is implemented. This approach leads to system
management and reliability problems in a large and rap-
idly changing distributed system. Second, Tcl-DP does
not provide automatic failure recovery in the event of a
server crash or a broken network connection. Services
offered by a server process will be unavailable if the pro-
cess crashes. Therefore, there is no guarantee of service
availability in Tcl-DP applications. Finally, Tcl-DP pro-
vides limited security. The current release (Tcl-DP v3.2)
allows applications to restrict commands that can be

Tcl-DP Name Server

Peter T. Liu
Brian Smith

Lawrence Rowe
Computer Science Division - EECS

University of California
Berkeley, CA 94720-1776
(pliu@CS.Berkeley.EDU)

called remotely and limit connections to clients running
on specific hosts. However, it does not prevent malicious
programs from taking over as legitimate services nor
does it support finer granularity access control. An au-
thentication protocol is needed to provide better security.

The Tcl-DP name server described in this paper is de-
signed to address these problems. It solves the explicit
host address and port number and availability issues, and
it provides a simple authentication protocol for applica-
tions to increase security. In addition, it is fault tolerant
and provides mechanisms for extending its functionality.
The remainder of this paper is organized as follow. Sec-
tion 2 describes the functionality of the Tcl-DP name
server and other name services in existence. Section 3
presents an overview of the name server design and de-
scribes how it fits in a real application. Section 4 dis-
cusses the implementation of the system. And, section 5
describes the current status of the system, the experi-
ences with the current implementation and possible fu-
ture extensions.

2. Name Server Functionality

This section describes the functionality of the Tcl-DP
name server. First, the name server must maintain infor-
mation about services and respond to client queries about
them. Second, it must start services on demand so they
are guaranteed to be available at all times. Third, an au-
thentication protocol is needed to protect the system
from malicious users. Fourth, the name server itself must
be fault-tolerant which means it must recover success-
fully if the name server itself or the host it runs on
crashes. Finally, the name server should provide mecha-
nisms to interface with external modules without inter-
fering with its normal operations. These issues are
discussed in this section followed by descriptions of
other name servers.

The name server must maintain information about avail-
able services running on the system, such as the service
names and the host addresses and port numbers needed

